
THE PROPAGATION OF THERMAL STRESSES IN AN 
ELASTIC-PLASTIC BAR 

(RASPROSTRANENIE TEBPEBATURNYKH NAPRIAZRENII 

V UPRUBO-PLASTICHESKOM STERZRNE) 

PYM ~01.27, No.2, 1963, pp. 383-389 

Iu. P. SUVOROV 
(Moscow) 

(Received Septenber 17, 1962) 

This paper treats the problem of the propagation of stress waves in a 
semi-infinite elastic-plastic bar resulting from sudden heating of the 
free end; moreover, account is taken of the dependence of the coefficient 
of thermal conductivity on the temperature (i.e. the nonlinear equation 
of heat conduction will be used), which f1.21 gives rise to a finite 
velocity of propagation of heat in the bar. The consideration of this 
fact leads to quantitative features of the elastic solution differing 
from well-known earlier solutions (e.g. [31). It will be assumed that 
the material of the bar is incompressible and linearly elastic; the 
mechanical properties will be regarded as being independent of the tempe- 
rature. 

1. The solution of the problem leads to the solution of the following 
system of equations 

tl”u aa 
Pdl”=z (equation of mot ion) (i.ii 

C=E(&*) (equation of state) (1.2) 

(equation of heat conduct ion) (1.3) 

where o is the stress, v the displacement, p the density, d the tempera- 
ture, a the coefficient of thermal expansion and A the coefficient of 
thermal conductivity. We will assume a power-law dependence of A on 7% of 
the following form 
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where os is the yield stress. Then, equation (1.3) can be written as 

0’0 zn--1 @.~” 
x =_ ho ,71--1 s 

a 

In the system of dimensionless variables 

the initial system of equations assumes the form 

a%4 as au aT ~q.‘?’ 

_ - -. 

a$-- ay ’ 
s=-c--T, ----y- 

d?l at - ay" (1.5) 

The initial and boundary conditions will be 

u (Y, 0) = 0, au (y, 0) / az = 0, s (0, 2) = 0 (1.6) 

7’ (Y, 0) = 0, T (0, 2) = To (1.7) 

For definiteness, we will set a = 2 in (1.5). We solve the resulting 
equations by means of the method of K&rmhn-Pohlhausen; the solution will 
be sought in the form 

T = 00 + al l (z) y- + a8 [-$q-I*+ . . . 

where T E 0 for y < l(s). I(T) - 0 as T - 0. In order to simplify the 
resulting calculations, consideration wil,l be restricted to the first 
two terms in the expansion (1.8). It can be verified directly, that the 

calculation of a large number of terms does not change the qualitative 
picture of the solution for the stresses. Taking condition (1.7) into 

account, we obtain 

( To [I - y/l (T)], Y < l(T) 
T - ‘( 0. Y > 1 (z) 

(1.9) 

Satisfying the last of equations (1.‘5) in the’ mean with respect to y, 
we have for I(T) the equation 

Now substituting expression (1.9) for T and carrying out the 
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integrations, we obtain 

i dl 2TQ 
--=- 
2 dr 1 (4 ’ 

I (0) = 0 (1.10) 

Hence 

1 (2) = B JG @ = 2 )/2To) 

2. From (1.5) we obtain the equation of motion in terms of the dis- 
placements 

a%4 a%l aT 
@=aya- Q(Y,~, Q=s (2.1) 

The solution of this equation in the region bounded by the Oy-axis 
and the bisector T = y (Fig. 1) for the initial conditions (1.8) can. be 
given by d’ Alembert? s formula 

u (B) = - + \\ Q(E,l)dldl=--;Sdrl”-~~’ Qd+ 

AA&C 0 u+a--- 

1 - =-- 
2 s IT (Y - sl + ~1 ‘1) - T (Y + rl - TV rl)l d? (2.2) 

0 

Taking (1.9) into account, we obtain the solution in the following 
form: 

in the region yOGN 

in the region OGHO 

u=o 

4TQ TQP 
u = 3p 1 v/z + TOY - 2 (l%B” + Y + z - IhrP - y + 2) - 

-- $2- Y) A”’ (z - Y) -? (z + y) A”(% + y) + $ [A'+ - Y) + A" (z + ~11 

in the region MHGN 

u = TOP VW - y + z - 3 tz _ Y) iA": (z - y) - B”’ (< _ y)] + 

+ $ [A"' (z - y) - B”I (z - y)] 

where 

A (4 = %B” + x - $ VW + 2, B (4 = %P” + z + B )/%P” + z (2.3) 

For the stresses, by formula (1.8), we obtain the following results: 

in the region yOGN 

s=o 
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in the region ECHO 

in the region MHCN 

s= 3 [A’/’ ( z - y) - B”’ (2 - y)l (2.5) 

On the bisector T = Y we will have 

g=_ n+$Jfy- 3 A% (2~) (Y <S”), s=-To (Y >, P’) (2.6) 

Hence it is clear that those lines in the region MHGN which are 

parallel to the principal bisector will be lines of constant displace- 

ments, velocities, and stresses. 

For the determination of the solution in the region Tab!, we have the 

Cauchy problem: 

tPU 

yp = g + Q (Y, d, u (0, 4 = cp (71, uv (0, d = To (2.7) 

where (p(T) is a yet unknown function; the indices y and T indicate de- 

rivatives. By the d’ Alembert formula we obtain (Fig. 1) 

U (P) = +‘p (z + Y) + +‘p (z - Y) + TOY + + \\ Q (E, tl) did? w3 
AtiPE 

From the condition of continuity of displacement on the bisector 

T = y we find 

Y Y-3 

* v 0) = - TOT - dq c 1 Q (E, rl) d% 
6 0 

Substituting this expression into (2.8), we obtain 

u (Y, 4 = To (Y - 2) + + Qd%dq-+ \\ Qdfdrl- + Qd%dll 
AODC 

Since Q = aT/ay is independent of y, then, considering the function 

Q(y, T) continued as an even function into the region of negative values 

of y, the solution can be rewritten in the form 

u (y, 7) = Tn ty - 5) - T 
1' 

-- 
2 c\ 

Qd%drl=To(y--r)-~sIT(y+~ -$'I- T (Y - z + ‘1, ‘910 
AYPC il 
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By formula (1.5) for the stresses. taking account of (1.9). we ob- 
tain 

in the region TOHL 

- y) - A”’ (z + y) 1 + $ f; 
in the region LHM 

s = 7 [A’/1 (T - Y) - B’l’ (z - Y)l + To 

on the bisector T = y 

(2.9) 

(2.10) 

a= 3 Jf/y - 3 A’/’ (2~) (y <pa), I= 6, (Y >87 (2.11) 

Comparing with 
wave front T = y 

(2.6). we obtain the jump in stresses at the shock- 

ISI = 8 (Y‘ Y + 9) - 8 (y, y - O)=To 

Figure 2 gives the graphs of 
the variation of stresses with 
time for T, = l/2 at the sec- 
tions y = 1 and y = 6. Figure 
3 gives the graphs of the de- 
pendence of s on the distance 
from the free face of the bar 
ahead of and behind the shock- 
wave front. 

!i 
OA K c 

3. From these graphs it is 
clear that when T, = 1. the 

Fig. 1. 

stress reaches the elastic limit at the special point 0 (the origin of 
coordinates) and on the whole section yap2 of the leading face of the 
shock-wave front, which is a consequence of the fact that the velocity 
of propagation of heat in the bar is finite. Moreover, this present 
solution differs essentially from that in [31. which was constructed on 
the basis of the classical linear equations of heat conduction. When 
TO > 1, there arise regions of plastic deformations (1). which are 
adjacent to the leading side of the shock-wave front and the forms of 
which are shown schematically in Fig. 4, where (2) is the elastic region. 

In the elastic region (where r< y), the earlier solutions (2.4) and 
(2.5) remain valid. From these formulas and the condition s = - 1 we 
find the equation of the elastic-plastic boundary 
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A’!’ (z + y) - A”* (z - y) = 
1 - T,, 

-+--tPT (Y 68 V?) 

(Y >, P G) (3.1) 

We will find the value T, = Ts for which the points A and B merge, 
i.e. starting with which all cross-sections of the bar in the course of 
time become plastic. Clearly, this takes place (Fig. 3) under the 

NY, y-0) 

-as- 

Fig. 2. 
Fig. 3. 

condition max s(y, y - 0) = - 1. Setting the derivative ds/dy equal to 

zero. we obtain 

l/G (2VV,P2 + 2Y -p) - v1/hj32 + 2yA’l’ (2~) = 0, or (4y - 1/sfl2)2 = 0 

Hence 

Y= $P? T”*=~i&y2YZ_,=; (3.2) 

In the plastic region, for a linear work-hardening material, the 

stresses are (Fig. 5) 

au 
-=ere'+T, 

El 

W 
s= q2e0+ $- 1, $ = x (3.3) 

where E, is the modulus of strain hardening. Whence 

s= q+qT+q2- 1 

From (1.5) and (3.4) we obtain the equation of motion 

(3.4) 

(3.5) 



The propagation of thermal stresses 583 

This equation can be solved numerically by the method of character- 

istics. Along the characteristics dy = f qdT we accordingly have 

Integrating these relations. we obtain 

uz = 5 qu, - 
2g2To 
p v‘? + Q,z when T + 0 

ut = f quv - D1,z + CI,~ when T = 0 
(3.6) 

and then it is easy to find the stresses. The constants D, 2 in the last 
formula can be found from the condition that the velocitiei and stresses 
should be continuous along the characterfstics, i.e. by requiring euual 
values of the function Zq2To/PJ T at the point of intersection of cor- 
responding characteristics with the parabola y = pJ 7; the constants 
C, 2 can be determined from the values of uy and u7 on the elastic- 

*l&tic boundary. 

The solution which has been constructed for the plastic regions will 
be unique only for those values of 9 for which the characteristics 
dy = f qd7 intersect the elastic-plastic boundary at a single point. 
This limitation is a consequence of the assumption concerning linear 
work hardening. The calculations show that for T, >, 2.5 the solution is 
valid for arbitrary values 0 $ p < 1. 

If the solution is known in the plastic region, then the solution be- 
hind the shock-wave front can be constructed in the following manner. 

Since it is known from the elastic 

solution that fTs1 > 0, it follows that 
instantaneous unloading along the line 

Fig. 4. Pig. 5. 

EC (Fig. 5) takes place, When passing across the shock-wave front. We 
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introduce the functions 

(1, (9) = I$/ (!I, Y - 0) - T (Y, Y) = e” (Y, y - 0) 

y (Y) = UT (Y, Y - 0) 

BY formula (3.3), we find (Fig. 5) 

s, = (I$@ (y) + q* - 1 

and the equation of the unloading line 

5C will be 

s = p - (1 - $1 I@ (Y) + 11 Fig. 6. 

Consequently, the equation of state in the region behind the shock- 

wave can be written as follows 

S==U 
Y - T +a (Y), 

(q2 - 1) I@ (Y) + 11 
a(y)= o -t 

(@ cl/Y, -5 - 1) 

(Q (Y) > - 1) 
(3.7) 

whereby, when T > T,,* for arbitrary y 

a (Y) = (? - 1) I@ (Y) + II 

Thus, in the region -r >y we again obtain a Cauchy problem 

(3.8) 

where 9(-r) is an as yet unknown function. 

We define a,, = a(0). Along the elastic-plastic boundary (3.1) we 

have 

s =- - 1, T = T” I - + _/I”% (T + y) + -+ /I’/? (z - y) + y] 
i 

When y. v - 0 along (3.1) 

:f - 0 T--t To (I + 9) =: ? 

Consequently, uy = s + T tends to u,, = 0. 

Ahead of the shock-wave near the origin of coordinates (Fig. 6). by 

formula (3.6)) we have 

u,(W= 
uy (4 + y/ (B) 

2 + 
(I+ (“a - UT (a + f (A) - f (B) 

20 2q ’ 

When M - 0, we have u - l/2(1+, + u,,) = 0, and, consequently, 
Y 
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a(o) = - T,. 

Similarly, it can be proved that y(O) = 0. Thus, 

Fig. 7. 

a0= (i- q2) PO - 1) (3.9) 

The solution of (3.8) has the form 

U(Y, d =$# (z + Y) + (3.10) 

?+I/ 

+;rpt -yY)+; 
. 

\ T(y+ z - ?, r)) dq + 
5 

+f s T(Y- 

u 
,a 

T + tl, rl) drl - \ a (Y) & 
7-u 0 

1 

40 t 

Fig. 8. 

From the condition that u is continuous when T = y, we find 

‘lrr ‘12-t Y 

cp (7) = - rp (0) -I- 2 \ a (Y) dy - \ T (Y, Y) dy - s !I’ (r - Y, Y) dy +2 II (‘/rr) (3.111 
n 0 ‘/r-i 

where U(y) = u(y, y - 0). From (l.Q), (2.6), (3.10). (3.11). and noting 
that 

duldy = uv (Y, Y - 0) + ~1 (y, Y - 0) = @ (Y) + ‘y (Y) + T (Y, Y) 

we find the stresses in the corresponding regions 

s = F (Y, 4 - p -fij 
- - 

~O/.C+Y-~-Y~~)--TY,~) (OHCO) (3.12) 

To 
8 = F (Y,d + p 1/z - v/r-y - 3 A”* (z + y) - T (y, 2) (C HDC) (3.13) 

8 = p (Y, z) .+ p vz 2)'rl-y - 3 B'ls (z _ y) (EDHO (3.14) 
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s = F (y, 2) - + [& (z + y) - .4”X (z - y)] - T (y, z) (GDC) (3.15) 

s = F (y, 2) - F [B”Z (7 - y) - A’/’ (z - y)] (GDL’) (3.16) 

where 

From (3.4). (3.12) and (3.14) we find 

[sl = ; z (Y) + (; - 4’) @ (Y) + + ‘y (y) + $ T (y, y) 
1 

--ao+l-qz 

In that part of the plastic region, in which the characteristics 

dy = f qdT do not pass through the region T > 0. by (3.6), we have 

uY 
G-1, IL7 E 1. Hence, for sufficiently large Y 

z (y) = (q’ - 1) [@ (y) + 11 = (q9 - 1) (uy - T + 1) = 0 

[sl = 1 - &I - q2) (To - 1) 

When To > (3 - q2) /(I - q2)* the jump in the stresses on the shock- 

wave becomes negative and the obtained solution behind the shock-wave 

front is no longer valid, since the equation of state (3.7), in this 

case, is not valid for all 

values of Y. The solution 

for T, > (3 - q2)/(l - s2) 
can be constructed in the 

following way. 

First of all we observe 

that, in this case, the 

stress exceeds the elastic 

limit also at the rear of 

the shock-wave front. 

Taking the solution sought 

rear T = Y t 0 of the wave 

immediate unloading behind 

Fig. 9. 

to be unique, we will assume that only the 

front remains plastic and that there is 

it. We introduce the function o(y) = s(y, 

y = 0). Then the equation of the line of unloading DE (Fig. 5) will be 

s == e” 4-o (y) - 

and the equation of state can be written down in the form 
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s=u u -T+ Q(Y), Q (y) = 
(Y) Is1 >, 0 

($ - 1) / q* [o (Y) + 11, [sl d 0 
(3.18) 

Moreover, for sufficiently 

lim s(y, y + 0) = 0. lim s(y. 
Consequently, R(O) = ao. 

small y and 7, R(y) = a(y) always, so that 
y - 0) = - T, as y - 0 and [s] y=. = T,. 

When -r > y, the solution (3.12) to (3.17). in which a(y) must he re- 
placed by Q(Y), will now be valid. The function o(y) can be obtained 
from the condition s(y, y + 0) = o(y) 

0 (Y) = & I 
-q2+1 

@ (Y) + y (Y) + T (Y, ~11 - aoq2i + q2 (3.19) 

It is easily verified that sv(y, y + 0) = 0~. i.e. the assumption that 
there is instantaneous unloading after the passage of the wave front is 

fulfilled. 

Figures 8 and 9 show the graphs (s, -r) at the sections y = 5, and 

y = 30 of the bar for T0 = 3. q = l/2, which graphs were obtained as the 
result of numerical computations. 
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