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This paper treats the problem of the propagation of stress waves in a
semi-infinite elastic-plastic bar resulting from sudden heating of the
free end; moreover, account is taken of the dependence of the coefficient
of thermal conductivity on the temperature (i.e. the nonlinear equation
of heat conduction will be used), which [1.2] gives rise to a finite
velocity of propagation of heat in the bar. The consideration of this
fact leads to quantitative features of the elastic solution differing
from well-known earlier solutions (e.g. [3]). It will be assumed that
the material of the bar is incompressible and linearly elastic; the
‘mechanical properties will be regarded as being independent of the tempe-
rature.

1. The solution of the problem leads to the solution of the following
system of equations

o%v as
PO = 37 (equation of motion) (1.1)
v
= (5;—-a0) (equation of state) 1.2)
) 7/ a9
F TR (7‘W> (equation of heat conduction) (1.3}

where o is the stress, v the displacement, p the density, ¢ the tempera-
ture, a the coefficient of thermal expansion and A the coefficient of
thermal conductivity. We will assume a power-law dependence of A on * of
the following form
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n—1 g
A= Ao n:tn_l 9"l (n>1) (es = Ts~)
4 M

°s

where g, is the yield stress. Then, equation (1.3) can be written as

o9 an L gy

T T

In the system of dimensionless varjiables

VE E . 10 VE 3 (0.4)
S =, T = -1, = —, U= "0, § == T R
" Ve AP “s ho V peg 9
the initial system of equations assumes the form

P2y Os du or  aT"

51;_226—"1/_' S:—EJ—T, g:—aF (15)
The initial and boundary conditions will be

u({y, ) =0, Bu(y,0/t=0 s(0,1)=20 (1.6
T(y 0 =0, T (0,%) = To (1.7)

For definiteness, we will set n = 2 in (1.5). We solve the resulting
equations by means of the method of KiArman-Pohlhausen; the solution will
be sought in the form

2
T:'a0+al%‘r)—+a'[lz/‘t)]+"' (18)

where T = 0 for y < I(7), I(T) = 0 as T —~ 0. In order to simplify the
resulting calculations, consideration will be restricted to the first
two terms in the expansion (1.8). It can be verified directly, that the
calculation of a large number of terms does not change the qualitative
picture of the solution for the stresses. Taking condition (1.7) into
account, we obtain

(Tolt —y/t(M], ¥y<LD)

| 0. y=21(v) (9

Satisfying the last of equations (1.5) in the mean with respect to y,
we have for [(T) the equation

I(r) t(t)

oT 02T?
‘ a-dy = 7gﬁ'dy
0

0

Ly

Now substituting expression (1.9) for T and carrying out the
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integrations, we obtain

o =

&'&

d Wy
]

1(0) =0 (1.10)

Hence

L(x) =B Vi@ =2V 2Ty
2. From (1.5) we obtain the equation of motion in terms of the dis-
placements
u 9% aT
=g QW %) =% 2.1)
The solution of this equation in the region bounded by the Oy-axis

and the bisector T = y (Fig. 1) for the initial conditions (1.8) can be
given by 4’ Alembert’s formula

X Ty
vy =—1 ({ cemaram=—L{om | om-
AABC 0 v+n—=
.
= 3\ ry—nten—Te+n—cwlm .2

0

Taking (1.9) into account, we obtain the solution in the following
form:

in the region yOGN

®
fi
=3

in the region OGHO

T - T
w=ge Vi + Ty — (VT Ty F i VIF =y Fo—
T 1 T 1 T 3, 4,
—F =P A - ) —F e+ DA+ 9+ 3 4 — )+ 4+ )

in the region MHGN
————— e e T 1 1
u=TPVIF —yFei—F -9 ldhc—y - B -yl +
T ] 3
+3 (47— 9 — B (s — 9]
where

A@ =Y+ 2—BVYP F2z, B@=UB+2+BVIFF+z (23
For the stresses, by formula (1.6), we obtain the following results:

in the region yOGN
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in the region OGHO

__T_(! s s [ y

=g e — 9 — A+l —To (157 (2.4
in the region MHGN

Ty . .
s="E?'[A/‘(1:-—-y)—B/’(T—"y)] (2.5)

On the bisector T = y we will have

To ., To .
s==To+ g Vi—F4%@) <)  s==To @G> @)

Hence it is clear that those lines in the region MHGN which are
parallel to the principal bisector will be lines of constant displace-~
ments, velocities, and stresses.

For the determination of the solution in the region TOM, we have the
Cauchy problem:

u ?u
5;1 = 3?2 + Q (yv T)» u (01 ‘E) =Q (1)1 uy (01 ") =T (2-7)

where ¢(T) is a yet unknown function; the indices y and T indicate de-
rivatives, By the d’ Alembert formula we obtain (Fig. 1)

| 1 1 {
WP =T Y+ o -9 Tyt || QE Wk @8
ADPE

From the condition of continuity of displacement on the bisector
T = y we find

Q (&, ) dE

=<
S |
£

Y
@ (1) = — Tor — %dn
[§]

Substituting this expression into (2.8), we obtain

»

v =Tow—o+g \| Qan—p (| odtan— §§ Qétan
A

ADPE AODC EK

Since Q = aT/ay is independent of y, then, considering the function
Q(y, T) continned as an even function into the region of negative values
of y, the solution can be rewritten in the form

uly,©) = Taly— <) —
% g\ ngd’lzT“(y’"‘)“%%lT(y-i—r—-n,n)—~T(y—c+'fl,n)]dn
AFPC 4
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By formula (1.5) for the stresses, taking account of (1.9), we ob-
tain

in the region TOHL

1 1 T
s= g L — 9 — 4%+l 2.9
in the region LHM

S=T [47 (x — y) — B" (x — )] + To (2.10)

on the bisector v = y

T, .
s~——Vy—TA’=(2y) W<B) =0, 2p) (2.19)

Comparing with (2.8), we obtain the jump in stresses at the shock-
wave front t = y

sl =s,y+ 0 — sy, y— O=To

Figure 2 gives the graphs of
the variation of stresses with
time for Ty = 1/2 at the sec-
tions y = l and y = 6. Figure
3 gives the graphs of the de-
pendence of s on the distance
from the free face of the bar
ahead of and behind the shock- F
wave front.

3. From these graphs it is Fig. 1.
clear that when T, = 1, the
stress reaches the elastic 1imit at the special point O (the origin of
coordinates) and on the whole section y ;>|32 of the leading face of the
shock-wave front, which is a consequence of the fact that the velocity
of propagation of heat in the bar is finite. Moreover, this present
solution differs essentially from that in [3], which was constructed on
the basis of the classical linear equations of heat conduction. When
To > 1, there arise regions of plastic deformations (1), which are
adjacent to the leading side of the shock-wave front and the forms of
which are shown schematically in Fig. 4, where (2) is the elastic region.

In the elastic region (where 7 < y), the earlier solutions (2.4) and
(2.5) remain valid. From these formulas and the condition s = - 1 we
find the equation of the elastic-plastic boundary
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: . {—T _
A"’(t+y)——A/’(t—y)=—;—;+B T w<pVn
2T2___1 -
e T ) (3.1)

We will find the value T0 = T5 for which the points A and B merge,
i.e. starting with which all cross-sections of the bar in the course of
time become plastic. Clearly, this takes place (Fig. 3) under the

01rs Sty y*o)

s = ¥,
7 5 T
| |
I !
| |
| |
| ! 31y, y-0)
=6\ | -
.aﬂ_ y 0.5
Fig. 2.
Fig. 3.
condition max s(y, y — 0) = ~ 1. Setting the derivative ds/dy equal to

zero, we obtain

VyQRVYBTF 2y —B) — VU2 + 2yA" (2y) = 0, or (4y—Ysp?)2=0

Hence

1[32 _— 22 7
Y= ’ 0 = = - =y
8 Ve—_s4sV2+2Vit O
In the plastic region, for a linear work-hardening material, the
stresses are (Fig. 5)

3.2)

du E1

a—y—zeze"—}-T, s=q2e°+qz-—1, 92::[4; 3.3)

where E1 is the modulus of strain hardening. Whence
a
s=92‘a,‘;‘*qu+q2~1 3.4

From (1.5) and (3.4) we obtain the equation of motion

9%u (8214 oT

%= 55— o 5
32 =4 o 37 | (3.,
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This equation can be solved numerically by the method of character-
istics. Along the characteristics dy = t qdv we accordingly have
To
= d —.2—-——:1
du, thuy qBVTd

Integrating these relations, we obtain

2¢°T -
ug:iquy-—-%—“lfr%—cl,g when 7 =% 0

ug =  qu, — Dya + Ci,» when T =0 3.6)

and then it is easy to find the stresses. The constants DI’2 in the last
formula can be found from the condition that the velocities and stresses
should be continuous along the characteristics, i.e. by requiring equal
values of the function 2q2To/pJ T at the point of intersection of cor-
responding characteristics with the parabola y = pJ r; the constants
Cl.2 can be determined from the values of u, and u, on the elastic-
plastic boundary.

The solution which has been constructed for the plastic regions will
be unique only for those values of g for which the characteristics
dy = t gdv intersect the elastic-plastic boundary at a single point.
This limitation is a consequence of the assumption concerning linear
work hardening. The calculations show that for TOE;Z.S the solution is
valid for arbitrary values 0 < q < 1.

If the solution is known in the plastic region, then the solution be-
hind the shock-wave front can be constructed in the following manner.

Since it is known from the elastic
solution that [s] > 0, it follows that
instantaneous unloading along the line

s
£ c e’
wa:qz
—— = = A1)
B(2(y) S,)
D(z-—’—*qé“ﬂ’,w(y))
Fig. 4. Fig. 5.

BC (Fig. 5) takes place, when passing across the shock-wave front. We
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introduce the functions

W=, hy—0 =Ty =ey, y—0)
Y =u(y,y— 0 T

By formula (3.3), we find (Fig. 5)
s = g0y + F—1

and the equation of the unloading line
BC will be

s=¢ — (1 — ¢ [ W + 1] Fig. 6.

Consequently, the equation of state in the region behind the shock-
wave can be written as follows

(@P—DOW+1 @y<—1)

s=u,—T+a (y), a(y)={ 0 (D) =>—1)

3.7
whereby, when T > T,* for arbitrary y

a(y) =(—1) [P @+ 1]
Thus, in the region T >y we again obtain a Cauchy problem

0% a2
= gut QW ), G =T,—a’ @
W0, =9, (01 ="To—a (0 .8)

where ¢@(T) is an as yet unknown function.

We define &, = «(0). Along the elastic-plastic boundary (3.1) we
have

o Lo 1— 7]
s =1, T=T[t—g ARG )+ AR )+ g

When y, T ~+ 0 along (3.1)

A0 Tr— To<1'+

L]

Consequently, uy = s + T tends to ug

Ahead of the shock-wave near the origin of coordinates (Fig. 6), by
formula (3.6), we have

= 0.

u, (A) +u, (B) u (A — u. (B (A —f (B
uy (M) = : 2 — + 24 + 2q ’

2 _
1m="5"Vx

= 0, and, consequently,

When M - 0, we have uy 1/2(u0 + uy)
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o) =~ T,.

Similarly, it can be proved that ¥(0) = 0. Thus,

T go=(1—¢) To—1) (3.9
G .
E The solution of (3.8) has the form
D 1
u,*) =59t +y + (3.10)

Ll
1 1 ¢
+zec—v+3 \Tw+ c—nman+

Q. b4

R E 1 ¢ ¢

> +73T(y—1+n.n)dn—3a(y)dy
e [\]

35 NG

Fig. 1.
Fig. 8.

From the condition that u is continuous when T = y, we find

VA VA Y

P =—9O+2\oway— \ Twva— | Ta—y 9 a+200m 0

0 0 A

where U(y) = u(y, y - 0). From (1.9), (2.6), (3.10), (3.11), and noting
that

dUjdy=u, 4, y— O+ u, v,y —0) =P+ ¥+ Ty

we find the stresses in the corresponding regions

T
s=F(y,c)—g——l}i(vc+y—Vc—y>—T(y,c) (OHCO)  (3.12)

T To .
t=F@O+ sV i—y—F A+ —Tw CHDO) (3.43)

T To .
s=F(y,1).—}-ﬁ;—§Vr—y——-—G9-B/‘(t——y) (EDHF)  (3.14)
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T 1 1
s=F@Y—F A et — A a =Y - T, (D6 (.15
Ty ;
s=F @0 —F B —y — 4% — y] (GDE)  (3.16)
where
1 (= 4— 1 — 1 1 + 1 T—1 .
Fuo = e La(B5 ) Lo () < Le (50 o
T+yy 1 ft—y\y 1 +y oty 1 /t—y T—y\, .,
Tz \F(Z) 7 v () + 2'(2 )z (7 T

From (3.4), (3.12) and (3.14) we find

1 t 1
l=ga@+(3—¢) QW+ 5 Y@ + 5T 1) — 5a0+1— g

In that part of the plastic region, in which the characteristics
dy = t qdTt do not pass through the region T > 0, by (3.6), we have
uy -1, U = 1. Hence, for sufficiently large y

AW =(@F=DIOW+U=(F =), —T+1)=0
1
l=1—50 - To—1

When T, > (3 - qz)/(l - q2), the jump in the stresses on the shock-
wave becomes negative and the obtained solution behind the shock-wave
front is no longer valid, since the equation of state (3.7), in this
case, is not valid for all
values of y. The solution

e T ——
for Ty > (3 = ¢5/(1 = ¢ O 5/ 70 T
[}
|
]
|
I
]

can be constructed in the
following way.

First of all we observe
that, in this case, the -1t
stress exceeds the elastic
limit also at the rear of
the shock-wave front.
Taking the solution sought to be unique, we will assume that only the
rear T = y + 0 of the wave front remains plastic and that there is
immediate unloading behind it. We introduce the function w(y) = s(y,

= 0). Then the equation of the line of unloading DE (Fig. 5) will be

1
s=¢"+to (y) — (y)-l-i-——

Fig. 9.

and the equation of state can be written down in the form
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a (y) ls1>0

Ni¢lo w41, <o &1®

Moreover, for sufficiently small y and T, Q(y) = a(y) always, so that
lim s(y, y + 0) =0, lim s(y, y = 0) = - TO as y - 0 and [S]y=0 = To.
Consequently, Q(0) = ag.

When T >y, the solution (3.12) to (3.17), in which a(y) must be re-
placed by Q(y), will now be valid. The function w(y) can be obtained
from the condition s(y, y + 0) = &(y)

2 2 _ g2
oW =Tral0 @+ ¥E) + T 9l — 2Lt (3.19)

It is easily verified that se (¥, + 0) =o, i.e, the assumption that
there is instantaneous unloading after the passage of the wave front is
fulfilled.

Figures 8 and 9 show the graphs (s, T) at the sections y = 5, and
y = 30 of the bar for T, =3, ¢ = 1/2, which graphs were obtained as the
result of numerical computations.
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